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A Unified Sampling Approach for Multipoint Analysis of Qualitative and
Quantitative Traits in Sib Pairs
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Recent advances in molecular biology have enhanced the opportunity to conduct multipoint mapping for complex
diseases. Concurrently, one sees a growing interest in the use of quantitative traits in linkage studies. Here, we
present a multipoint sib-pair approach to locate the map position (t) of a trait locus that controls the observed
phenotype (qualitative or quantitative), along with a measure of statistical uncertainty. This method builds on a
parametric representation for the expected identical-by-descent statistic at an arbitrary locus, conditional on an
event reflecting the sampling scheme, such as affected sib pairs, for qualitative traits, or extreme discordant (ED)
sib pairs, for quantitative traits. Our results suggest that the variance about , the estimator of t, can be reducedt̂

by as much as 60%–70% by reducing the length of intervals between markers by one half. For quantitative traits,
we examine the precision gain (measured by the variance reduction in ) by genotyping extremely concordant (EC)t̂

sib pairs and including them along with ED sib pairs in the statistical analysis. The precision gain depends heavily
on the residual correlation of the quantitative trait for sib pairs but considerably less on the allele frequency and
exact genetic mechanism. Since complex traits involve multiple loci and, hence, the residual correlation cannot be
ignored, our finding strongly suggests that one should incorporate EC sib pairs along with ED sib pairs, in both
design and analysis. Finally, we empirically establish a simple linear relationship between the magnitude of precision
gain and the ratio of the number of ED pairs to the number of EC pairs. This relationship allows investigators to
address issues of cost effectiveness that are due to the need for phenotyping and genotyping subjects.

Introduction

Human genetics often focuses on quantitative traits as-
sociated with chronic diseases—such as total serum cho-
lesterol, which is associated with heart disease; IGE,
which is associated with asthma; and blood pressure,
which is associated with hypertension—in an attempt to
better understand genetic forces that control patho-
genesis to complex diseases. Even when one is dealing
with intrinsically discrete phenotypes (affected vs. not
affected), such as the major psychiatric disorders, there
are often several associated phenotypes available, some-
times called “endophenotypes,” which are continuous
in scale. Generally, there is more information available
for statistical analysis of quantitative traits because all
individuals (not just the affected individuals) contribute
information. These quantitative traits will be used more
frequently for mapping of susceptibility genes for com-
plex diseases, since understanding the genetic control of
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risk factors for major chronic diseases may offer im-
portant opportunities for intervention.

Likelihood-based methods for detection of linkage
between observed genetic markers and unobserved
genes controlling quantitative traits is well developed;
for example, see the work of Kruglyak and Lander
(1995) and Allison et al. (1999) and references therein.
Its primary drawback, shared by similar likelihood ap-
proaches for qualitative traits, is that the final conclu-
sions about gene location are highly sensitive to the
correct specification of mode of inheritance, which is
required for computation of conventional LOD scores.
Nonparametric approaches, such as the sib-pair design
proposed by Haseman and Elston (1972), greatly alle-
viate such concern, because fewer assumptions are re-
quired. Instead, the Haseman-Elston method simply re-
gresses the squared difference of the quantitative trait
between members of a sib pair on the estimated number
of marker alleles shared identical by descent (IBD). One
can use least-squares methods to test the hypothesis of
no linkage between an unobserved quantitative-trait lo-
cus (QTL) and the observed marker associated with
estimated IBD sharing, by testing the statistical signif-
icance of this regression coefficient. This simple but el-
egant approach has drawn a good deal of attention
recently, in two respects. One of these respects regards
extensions of this method to multipoint analysis, in
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which data from multiple markers are considered si-
multaneously (e.g., see Goldgar 1990; Fulker and Car-
don 1994). Unlike the original single-marker approach,
this multipoint extension has the advantage of estimat-
ing the location of the unobserved QTL at least to an
interval between adjacent markers. Another respect has
to do with the sampling considerations. Specifically,
rather than drawing a random sample of sib pairs for
inference, one may use ascertainment of pedigrees
through one sib with extreme trait values to increase
statistical power for detection of linkage (e.g., see Carey
and Williamson 1991; Fulker et al. 1991; Eaves and
Meyer 1994). The hypothesis of no linkage can then be
tested by regression of the trait value of the unselected
sib on the estimated IBD sharing for a marker between
the two sibs. This approach of using selected sib pairs
to map QTL has recently been extended to interval map-
ping in which two flanking markers are used (Cardon
and Fulker 1994).

This unified approach for multipoint mapping by use
of selected samples of sib pairs may be scrutinized as
follows. First, Risch and Zhang (1995, 1996) pointed
out that the power to detect linkage by use of random
or selected samples of sibs can be improved on, some-
times substantially, by restriction of the sampling to
extremely discordant (ED) pairs, since sib pairs that
involve intermediate trait values provide relatively little
power. Gu et al. (1996), Gu and Rao (1997), and Zhao
et al. (1997) further suggested that a combination of
reasonable numbers of ED and extremely concordant
(EC) pairs may be even more powerful and cost ef-
fective. Second, with the trait value of the unselected
sib as the dependent variable, any attempt to estimate,
through regression methods, the location of QTL by
multipoint mapping raises the following concern. Gen-
erally, the conventional least-squares estimate for the
regression coefficients in linear-regression models may
be biased when the sampling probability of each unit
depends on the value of the dependent variable (e.g.,
see Liang and Qin, in press). Given that the trait values
of each sib pair are likely to be positively correlated,
the unselected sibs with extreme values are more fa-
vorably sampled than they otherwise would be. Here,
the regression coefficient becomes a complicated func-
tion of the true (but unobserved) location of the QTL,
as well as of other sampling factors.

Although the ED or EC designs have been shown to
be more powerful for detection of linkage, their exten-
sion to multipoint analysis is less well studied, especially
for mapping of unobserved genes. From the sampling
viewpoint, it is more natural to consider the number of
alleles IBD at the marker locus as being the dependent
variable and the event that reflects the sampling scheme
as being the independent variables (e.g., see Risch and
Zhang 1995). With this in mind, one can, for multipoint

analysis, simply regard the numbers of alleles IBD at
multiple marker loci as being the dependent variables
and regress these on the location of the markers for
each sib pair. One implication of this observation is that
the recent method developed by Liang et al. (in press)
for multipoint mapping of genes that control qualitative
traits can be readily applied to genes that control quan-
titative traits. The main goal of the present article is to
propose a unified sampling approach for multipoint
mapping of genes for both qualitative and quantitative
traits, the latter focusing on the ED and EC designs.
Just as in the work of Liang et al. (in press), the analysis
method is designed to estimate the map position of an
unobserved susceptibility gene, along with a measure of
statistical uncertainty, under the assumption of some
preliminary evidence of linkage in the region.

Robustness of IBD in Qualitative and Quantitative
Traits

Consider a chromosomal region of length T cM framed
by M markers at loci . We assume0 < t ! , ) , ! t < T1 M

that the region contains no more than one unobserved
susceptibility gene at some unknown location t. We fur-
ther assume that all M markers have been genotyped for
each of n pairs of siblings. Let F denote the event that
reflects the sampling criterion under which sib pairs were
selected. For qualitative traits, a common criterion is that
both siblings are affected, known as the affected-sib-pair
(ASP) design. For quantitative traits, the following three
sampling criteria have received attention lately: ED (de-
noted as “F1”), EC with high trait values (F2), and EC
with low trait values (F3). Let S(t) be the number of
alleles shared IBD for a sib pair at an arbitrary marker
locus t, . For a specified sampling criterion F,0 < t < T
one can express the expected IBD sharing of a marker,
at t, in terms of its map distance from the true location
t, as

2[ ] [ ]m(t) = E S(t)FF =1 1 (1 2 2v ) E S(t)FF 21{ }t,t

2= 1 1 (1 2 2v ) C , (1)t,t F

where vt,t is the recombination fraction between marker
t and the unobserved gene at location t. The proof of
expression (1) for qualitative traits has been given by
Liang et al. (in press) and can be applied directly to any
arbitrary sampling criterion F as well.

REMARK 1. Expression (1), for the expected IBD shar-
ing, m(t), is valid regardless of the underlying mode of
inheritance. A major assumption needed is that no more
than one QTL is linked to the region, even though mul-
tiple genes may influence the phenotypic trait. It is our
speculation that, when this assumption is violated, the
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peak for the fitted m(t) curve would be broader than
that in the single-locus situation.

REMARK 2. One important implication of expression
(1) with regard to the estimation of the true location t

of the QTL in the region is that m(t) is monotonic in
and attains its maximum or minimum value inFt 2 tF

at . However, whether representsE [S(t)FF] t = t E [S(t)FF]
the maximum (or minimum) value depends on whether

in expression (1)—that is, whetherC = E [S(t)FF] 2 1F

is positive (or neg-C = Pr [S(t) = 2FF] 2 Pr [S(t) = 0FF]F

ative). For ASPs and EC sib pairs with high-trait-value
(F2) and with low-trait-value (F3) designs, this CF term
is likely to be positive when a marker is linked to the
trait locus. For the ED design, on the other hand, the
probability that zero alleles shared IBD at t will be
observed—that is, —is far greater than thePr [S(t) = 0FF]
probablility that two alleles shared IBD will be ob-
served; in this situation, CF is likely to be negative in-
stead. These observations pose a challenging question
as to how one may estimate t when both ED and EC
sib pairs are sampled, and this will be addressed in the
next section.

REMARK 3. As noted by Liang et al. (in press), the
ability to estimate t well depends critically on the mag-
nitude of CF: the smaller CF is in magnitude, the flatter
the surface of m(t) across the mapped region, which
makes it difficult to resolve t on the basis of IBD sharing
(see fig. 2 in Liang et al., in press). For quantitative
traits, sib pairs whose trait values are intermediate are
likely to produce, on average, similar numbers of pairs
that share two and zero alleles IBD, respectively. Con-
sequently, the corresponding CF value is likely to be
closer to 0 and, hence, to provide less statistical power
to detect linkage or to map the QTL. This observation
is consistent with the argument that the use of sib pairs
with extreme values (ED and/or EC) may be optimal
sampling strategies for mapping of QTLs in humans
(Gu and Rao 1997; Zhao et al. 1997). Note also that
the square of CF appears as the denominator of the
sample-size (number of sib pairs) formula, both for a
single marker (Risch and Zhang 1995) and for multiple
markers (Liang et al., in press). Indeed, the ratio of the
CF squares from any two designs provides an excellent
approximation to the ratio of sample sizes needed; see
Liang et al. (in press).

To elaborate on the point made in Remark 3, we
consider the following bivariate model (e.g., Haseman
and Elston 1972; Risch and Zhang 1995; Gu et al. 1996;
Zhao et al. 1997): , , 2,x = m 1 g 1 e j = 1 i =ij ij ij

. Here, m is the overall mean of the quantitative1, ) ,n
trait for sib 1 (xi1) and sib 2 (xi2) from the ith of n
sampled sib pairs, and gij and eij represent unobserved
genetic and environmental effects, respectively. For sim-
plicity, we assume that the trait locus that determines
gij has two alleles, A1 and A2, with frequencies p and

, respectively. Furthermore, the genotypic ef-q = 1 2 p
fect is given by

a if genotype = A A1 1

g = d if genotype = A A .ij 1 2{
2a if genotype = A A2 2

Thus, in the special case of an additive model, one has
and , whereas, for a dominant model, onea = 1 d = 0

has . Finally, we assume that the residual en-a = 1 = d
vironment is bivariately normally distributed(e ,e )i1 i2

with mean , variance 1, and between sib-pair cor-(0,0)
relation r.

Tables 1 and 2 show the CF values, classified by decile
model (additive vs. dominant), by allele frequency
( vs. .4), and for two values of the residual cor-p = .2
relation ( vs. .4), the same parameter configura-r = .0
tions used by Risch and Zhang (1995). For example,
for an additive model with and (lower sec-p = .4 r = .4
tion of table 1), the CF value for a sib pair whose trait
values are both in the top-10th decile is .17. For the
same model, the CF for an ED sib pair—that is, a sib
pair whose trait value for sib 1 (2) is in the 1st (10th)
decile, is 2.53. Note that the ratio of the squares of
these two CF’s [ ] is in good agreement2(2.53/.17) = 9.7
with the ratio of the corresponding sample sizes needed
(107/10), as reported in table 2 of the work of Risch
and Zhang (1995). On the basis of the magnitude (in
absolute values) of these CF values alone, it is rather
clear that ED sib pairs will be more informative for
estimation of t. Furthermore, greater efficiency in es-
timating t is gained for higher allele frequencies at the
trait locus and for a stronger degree of residual corre-
lation. To examine how sensitive these conclusions are
to the assumption of normality of errors, tables 3 and
4 present the CF values when the residuals are assumed
to follow a bivariate logistic distribution that is known
to have “heavier tails” than does the normal distribu-
tion. Because of the constraint associated with the range
of the r values for bivariate logistic distributions (John-
son and Kotz 1972, p. 294), we used and .3r = .0
instead of .4. Qualitatively, one would draw similar con-
clusions about both the superiority of the ED design
and the impact of modeling assumptions, such as the
magnitude of allele frequency and residual correlation,
even in the presence of nonnormality.

Statistical Inference for Locating t

Consider the design in which n1, n2, and n3 sibling pairs
of ED, EC with high trait values, and EC with low trait
values, respectively, are recruited for linkage studies.
Here is the total number of sib pairsn = n 1 n 1 n1 2 3

sampled. Define, for , 2, and 3,i = 1 C = E [S(t)FF ] 2 1i i

as three unknown “nuisance” parameters. They are nui-
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Table 1

CF Values for the Additive Single-Locus Model with a Bivariate Normal Distribution for
Residual Environment

DECILE

VALUE FOR DECILE

1 2 3 4 5 6 7 8 9 10

p = .2

* * * ** ** *** ** * 2.11 2.22
* ** * ** *** ** ** * 2.17

1 * ** ** ** *** ** ** * 2.14
2 * * ** ** *** *** ** ** 2.10
3 ** ** ** *** *** *** ** ** *
4 *** ** ** ** *** *** *** *** **
5 ** ** ** ** ** *** ** ** **
6 * ** *** ** ** ** ** ** *
7 2.10 ** ** *** ** ** ** * .11
8 .16 * * ** *** ** ** ** .20
9 2.25 2.17 2.12 * ** *** ** * *
10 2.40 2.31 2.25 2.20 2.15 2.10 ** *** * .16

p = .4

.16 .12 * ** ** ** * 2.13 2.20 2.32
1 .13 ** ** ** *** ** * * 2.16
2 * * ** ** *** *** ** * 2.11
3 ** * * ** ** *** *** ** *
4 ** ** * * ** ** ** *** **
5 * *** ** ** ** ** ** ** **
6 2.13 ** *** ** ** ** * * *
7 2.20 ** ** *** ** ** * * .13
8 2.27 2.16 * ** *** ** * * .21
9 2.37 2.25 2.17 2.10 * *** ** * .10
10 2.53 2.40 2.31 2.23 2.17 2.10 ** ** * .17

NOTE.—Above the diagonal, ; below the diagonal, . * = ; ** =r = .0 r = .4 .05 < FC F ! .1F

; *** =.01 < FC F ! .05 FC F ! .01F F

sance in the sense that, in contrast to t (the parameter
of primary interest), these Ci’s are needed only to com-
pletely specify and are of little intrinsic interestE [S(t)FF ]i
in the mapping of the QTL. This is not to say that the
magnitude of these nuisance parameters (the Ci’s) have
no bearing on statistical power for linkage analysis; see
Remark 3. If all M markers are completely informative,
so that IBD sharing can be counted directly, then, for
each sib pair, one observes

k = 1, ) ,n′ i[ ]S(Y ) = S (t ), ) ,S (t ) , (2)ik ik 1 ik M {i = 1,2,3

where Yik denotes the marker information for the kth
sib pair ascertained from the ith design, , 2, and 3,i = 1
and denotes the number alleles shared IBD for theS (t )ik j

jth marker, . In the more realistic situation,j = 1, ) ,M
in which the markers are not necessarily fully infor-
mative, one may impute S(t) by considering (e.g., see
Liang et al., in press)

2

S(tFY ) = ø Pr (S (t ) = øFY ) . (3)Oj ik ik j ik
ø=0

Following the proof of Proposition 2 in the study by
Liang et al. (in press), we can state that, for an arbitrary
sampling criterion that includes F1, F2, and F3, the ex-
pected value of the imputed IBD statistic is

2[ ]E S(tFY )FF =1 1 (1 2 2v ) C { m (t ) ; (4)j ik i t,t i i j

that is, the imputed statistic, , in expression (3)S(tFY )j ik

is an unbiased estimator for mi(tj), the expected IBD shar-
ing, for any arbitrary marker at locus tj, among those
who are sampled through one or another sampling cri-
terion Fi.

REMARK 4. Expression (4) sheds light on how one
may combine data from different sampling designs to-
gether to make inferences about t, the location of a gene
(see Remark 2). Analogous to the more familiar anal-
ysis-of-covariance model, expression (4) implies that,
whereas the expected IBD sharing at an arbitrary
marker locus may be different in magnitude under dif-
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Table 2

CF Values for the Dominant Single-Locus Model with a Bivariate Normal Distribution for
Residual Environment

DECILE

VALUE FOR DECILE

1 2 3 4 5 6 7 8 9 10

p = .2

.11 .11 .10 * * ** ** 2.17 2.32 2.42
.10 .10 * * ** ** 2.16 2.30 2.40

1 .11 * * * ** ** 2.15 2.27 2.35
2 .10 .10 * * ** ** 2.12 2.22 2.28
3 * .10 .10 ** ** ** * 2.14 2.18
4 * * * * *** ** ** ** *
5 ** ** * * * ** ** * *
6 2.11 ** ** ** * * .10 .14 .16
7 2.25 2.14 * ** ** * * .19 .21
8 2.37 2.29 2.22 2.14 * ** * .14 .23
9 2.44 2.40 2.35 2.29 2.19 * * .15 .19
10 2.46 2.45 2.43 2.40 2.34 2.24 * * .18 .22

p = .4

.24 .21 .16 * * 2.18 2.27 2.34 2.38 2.40
.19 .14 * ** 2.14 2.21 2.26 2.29 2.30

1 .23 .10 ** ** * 2.12 2.15 2.16 2.17
2 .18 .20 ** *** ** ** ** ** **
3 * .14 .14 *** ** ** ** ** **
4 * * .10 .10 ** * * * *
5 2.23 * ** * * * * * *
6 2.33 2.19 * ** * * * .10 .10
7 2.38 2.28 2.14 ** ** * * .10 .11
8 2.41 .34 2.21 * ** * * .10 .11
9 2.43 2.38 2.28 2.14 ** ** * .10 .10
10 2.44 2.41 2.35 2.24 2.11 ** * * .10 .11

NOTE.—Above the diagonal, ; below the diagonal, . * = ; ** =r = .0 r = .4 .05 < FC F ! .1F

; *** = ..01 < FC F ! .05 FC F ! .01F F

ferent sampling criteria, as characterized by these Ci’s,
the “effect” that the distance from a marker at locus t
to the true location t, as characterized by vt,t, has on
the expected IBD sharing is the same—namely, (1 2

. Thus, one is in position to estimate t from the22v )t,t

combined data, so long as (i) there is preliminary evi-
dence of linkage to the region covered by the available
map and (ii) there are at least two markers at different
loci from this same region genotyped for each sib pair.

Define as∗S (Y )ik

∗ ′[ ]S (Y ) = S(t FY ), ) , S(t FY ) , (5)ik 1 ik M ik

the imputed IBD-sharing statistic defined in expression
(3) for the k sib pair obtained under the ith sampling
criterion. We propose to estimate the vector d =

by solving the following estimating equa-′(t,C ,C ,C )1 2 3

tion for d:

3 ni ′m (d)i 21 ∗ ∗[ ][ ]Cov S (Y ) S (Y ) 2 m (d) =0 , (6)OO ik ik i[ ]di=1 k=1

where

′[ ]m (d) = m (t ; t,C ), ) ,m (t ; t,C ) .i i 1 i i M i

Here we have stressed the dependence of ,m (t ) j =i j

on d through the true location t and Ci only,1, ) ,M
by reexpressing it as . Let be the solution ofˆm (t ; t,C ) di j i

the estimating equations in expression (6), and one has
the following proposition.

PROPOSITION 1. Let d0 be the true but unknown value
for d, and let li be the limiting proportion of the total
sample obtained under the ith sampling criterion, i =
, 2, and 3—that is, , , 2, and 3.1 l = lim n /n i = 1i nr` i

Under the assumption that there are reasonable num-
bers of sib pairs obtained under each of the three sam-
pling criteria—that is, , , 2, and 3, then,0 ! l ! 1 i = 1i

as n becomes large, is multivariate-normally distrib-d̂

uted with mean d0 and a covariance matrix:4 # 4

3 21′m (d) m (d)i i21 ∗[ ]S = l Cov S (Y ) , (7)O i i{ }[ ] [ ]d di=1

evaluated at . Here, is the imputed IBD-∗d { d S (Y )0 i

sharing statistic defined in expression (5), for a sib pair
obtained under the ith sampling criteria.



1636 Am. J. Hum. Genet. 66:1631–1641, 2000

Table 3

CF Values for the Additive Single-Locus Model with a Bivariate Logistic Distribution for
Residual Environment

DECILE

VALUE FOR DECILE

1 2 3 4 5 6 7 8 9 10

p = .2

* * * ** ** *** ** ** 2.12 2.19
* * ** ** *** ** * 2.10 2.17

1 * ** ** ** *** ** * * 2.15
2 * * ** ** *** *** ** * 2.12
3 ** ** ** ** *** *** ** ** *
4 ** ** ** ** *** *** *** ** **
5 ** *** ** ** ** ** ** ** **
6 * ** *** ** ** ** ** * *
7 2.10 * ** *** ** ** ** * .12
8 2.16 2.10 * ** *** ** ** * .20
9 2.22 2.16 2.11 * * ** ** * *
10 2.31 2.25 2.21 218 2.15 2.10 ** ** * .18

p = .4

.14 .12 * * *** ** * 2.14 2.20 2.27
.11 * ** ** ** * 2.11 2.16 2.23

1 .14 * ** ** ** ** * 2.12 2.18
2 .11 * ** ** *** ** ** * 2.12
3 * * * ** ** ** *** ** *
4 ** ** * * ** ** ** *** **
5 * *** ** * * ** ** ** **
6 2.12 ** *** ** * * * * *
7 2.17 2.10 ** *** ** * * .11 .14
8 2.24 2.16 2.10 * *** ** * * .20
9 2.33 2.24 2.18 2.12 * *** ** * .10
10 2.41 2.34 2.28 2.22 2.15 * ** ** .11 .19

NOTE.—Above the diagonal, ; below the diagonal, . * = ; ** =r = .0 r = .3 .05 < FC F ! .1F

; *** =.01 < C F ! .05 FC F ! .01F F

REMARK 5. This generalized estimating equations
(GEE) procedure, utilized by Liang et al. (in press) for
the ASP design, was originally developed in the context
of longitudinal data analysis (Liang and Zeger 1986).
This method allows one to assess the precision of evend̂

if the covariance matrix for in expression (6) is∗S (Y )ik

incorrectly specified. Specifically, one can estimate the
covariance matrix S in espression (7) by ,21 21ˆ ˆ ˆ ˆS = S S S1 2 1

where

3 ni ′m (d) m (d)i i21 ∗ˆ [ ]S = Cov S (Y ) ,OO1 ik[ ] [ ]d di=1 k=1

3 ni ′m (d)i 21 ∗ˆ [ ]S = Cov S (Y )OO2 ik[ ]di=1 k=1

m (d)i∗ ∗ ′ 21 ∗[ ][ ] [ ]# S (Y ) 2 m (d) S (Y ) 2 m (d) Cov S (Y ) ,ik i ik i ik
d

evaluated at .ˆd { d

REMARK 6. As noted by Liang et al. (in press), a minor
modification is needed when expression (6) is employed

to locate t. Strictly considered, vt,t is the genetic distance
between the marker t and the true QTL—that is,

20.02Ft2tF( )1 2 e
v = (8)t,t 2

under Haldane’s (1919) mapping function. Note that
this function is not differentiable with respect to t. How-
ever, equation (8) can be modified by replacement of

byFt 2 tF

Ft 2 tF if Ft 2 tF ≥ e
2 ,(t 2 t) e
1 if Ft 2 tF ! e{

2e 2

where e is some prespecified positive number. Liang et
al. (in press) found through simulations that this mod-
ified GEE method is insensitive to the choice of e values.
We will therefore use cM throughout the rest ofe { 1
the article.

We now study the variance of for four designs fort̂

which M equally spaced and fully informative markers
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Table 4

CF Values for the Dominant Single-Locus Model with a Bivariate Logistic Distribution for
Residual Environment

DECILE

VALUE FOR DECILE

1 2 3 4 5 6 7 8 9 10

p = .2

.10 .10 .10 * * ** * 2.21 2.31 2.36
.10 .10 * * ** * 2.20 2.30 2.35

1 .10 * * * ** * 2.19 2.29 2.33
2 .10 .10 * * * * 2.17 2.25 2.29
3 * * * * ** ** 2.13 2.19 2.22
4 * * * * ** ** * * *
5 ** * * * * ** * * *
6 * ** ** * * * .13 .16 .17
7 2.25 2.16 * ** ** * .11 .19 .20
8 2.36 2.29 2.22 2.15 * *** .10 .15 .22
9 2.40 2.35 2.31 2.27 2.21 2.10 ** .15 .19
10 2.41 2.39 2.38 2.36 2.33 2.25 * .12 .19 .21

p = .4

.22 .21 .18 * * 2.21 2.28 2.34 2.35 2.35
.20 .16 * * 2.19 2.24 2.27 2.29 2.30

1 .22 .13 * * 2.13 2.17 2.19 220 2.20
2 .20 .19 ** ** ** * * * *
3 .13 .15 .16 ** ** ** ** ** **
4 * ** .11 .11 * * * * *
5 2.24 2.10 *** * * * * * *
6 2.32 2.20 * ** * * * * .10
7 2.34 2.26 2.15 ** * * * .10 .10
8 2.36 2.30 2.21 * ** * * * .10
9 2.37 2.33 2.28 2.15 ** *** * * .10
10 2.39 2.38 2.35 2.24 * ** * * .10 .10

NOTE.—Above the diagonal, ; below the diagonal, . * = ; ** =r = .0 r = .3 .05 < FC F ! .01F

; *** = ..01 < FC F ! .05 FC F ! .01F F

are assumed to be genotyped for all sib pairs: design I,
(10 cM apart); design II, (20 cM); designM = 11 M = 6

III, (5 cM); and design IV, (10 cM). Re-M = 21 M = 6
sults are similar for designs in which markers are not
equally spaced, and, therefore, such designs are not pre-
sented here. The first three designs all have the same
length ( cM), framed by a varying number ofT = 100
markers with different map densities. Designs I and IV,
on the other hand, have the same density, but the num-
ber of markers and total map length in design I are
twice those of design IV. Figure 1 shows the ratio of
var for designs II–IV versus design I. These patternsˆ(t)
are the same irrespective of model of inheritance, allele
frequency, and residual correlation. Results shown in
figure 1 strongly suggest the benefit of having more
dense markers available for genotyping, as far as the
precision of the estimation of t is concerned. The degree
of efficiency gain depends, however, on the relative lo-
cations of t, the true QTL, and the markers. When the
var for design II (markers 20 cM apart) is comparedˆ(t)
with that of design I (markers 10 cM apart), for ex-
ample, the range of the ratio is 1–3.3 (with 1 occurring

when the trait locus t occurs at an observable marker
ti). In other words, having markers 10 cM apart can
reduce the var as much as 67%, compared with hav-ˆ(t)
ing markers 20 cM apart. The precision gain from hav-
ing even denser markers (design III has markers 5 cM
apart, compared with design I) is less striking yet still
amounts to as much as a 60% reduction in var . Toˆ(t)
further illuminate this phenomenon of efficiency gain,
figure 2 plots var versus t, cM, for designsˆ(t) 0 < t < 20
I–III (under an additive model, , ). For eitherp = .2 r = .0
design, figure 2 shows that the variance of is at itst̂

minimum when t, the true QTL, is located at the middle
of flanking markers. Moreover, this minimum value of
var can be attained by the addition of more markersˆ(t)
between the original two flanking markers. Finally, one
may argue that the reduction of var is a result ofˆ(t)
having more markers that are not necessarily dense. The
variance ratio, as shown in figure 1, that is seen when
design I (11 marker spaces, 10 cM apart) is contrasted
with design IV (6 marker spaces, 10 cM apart), argues
against this assertion. With the same marker density,
there is no efficiency gain from having more markers,
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Figure 1 Ratio of asymptotic var for designs II–IV versus design I for t, the true QTL, cMˆ(t) 0 < t < 100

as long as the true QTL is flanked by the markers at
hand.

In summary, when judged from the design viewpoint,
our finding is consistent with the two-stage design com-
monly practiced today; that is, stage one is designed to
identify a few regions in the genome that give prelim-
inary evidence of linkage. Then, in stage two, more
markers are added to the region, which gives some pre-
liminary evidence of linkage. Our findings argue that
this second stage will provide a more precise estimation
of the location of a true unobserved gene—that is, will
minimize the var .ˆ(t)

Cost Effectiveness

Noting that S in equation (7) depends on the li’s, where
, we can now examine the question asl 1 l 1 l = 11 2 3

to how much efficiency, in terms of estimation of t, can
be gained by genotyping the EC sib pairs and including
them along with ED sib pairs in the statistical analysis.
Table 5 shows values of for some selected valuesV /V1 2

of allele frequency and residual correlation. Here, V1 is
the asymptotic variance of when the GEE method ist̂

used in equation (6), and V2 is that of when only thet̂

ED pairs were used—that is, when l2 and l3 are set to
0. Note that, with the bivariate normal genetic model
specified in the previous section, not only the values of
the Ci’s but those of the li’s are completely determined.

Only results from design I are presented here, and the
ratios are rather stable, irrespective of the true location
t.

For the additive model, the efficiency loss, as mea-
sured by the variance of , will be between 46% andt̂

53% (the end points of this range are for andp = .4
, respectively) if the residual correlation is 0 (i.e.,p = .2

). However, when , a much greater degree ofr = 0 r = .4
efficiency loss occurs if only ED pairs are genotyped. In
this situation—that is, , a higher proportion of allr = .4
sib pairs fall into the EC categories relative to the ED
category than when . For example, with andr = .0 p = .2

, , whereas, withr = .0 (l ,l ,l ) = (.33,.39,.28) p = .21 2 3

and , . For the dominantr = .4 (l ,l ,l ) = (.05,.49,.46)1 2 3

model, the impact that residual correlation has on rel-
ative efficiency is as striking as that for the additive
model. It is interesting to note that, when r is kept at
the same level, the loss in efficiency is greater for the
dominant model, with the larger allele frequency (p =

), and thus a reversal of the pattern is seen with the.4
additive model.

A natural question to raise next is how one translates
these findings to address the issue of cost effectiveness.
It is clear from table 5 that one can improve on the
precision of mapping an unobserved gene by genotyping
both EC and ED sib pairs, at the expense of additional
genotyping and phenotyping costs. The question is, how
great is the cost? To address this issue, figure 3 shows
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Table 5

V /V1 2

Genetic Model
and Allele Frequency

Residual
Correlation aV /V1 2

Additive:
.2 .0 .47
.2 .4 .36
.4 .0 .54
.4 .4 .38

Dominant:
.2 .0 .65
.2 .4 .31
.4 .0 .63
.4 .4 .29

a V1 = the asymptotic variance of whent̂

the GEE method is used; V2 = the asymptotic
variance of when only the ED sib pairs aret̂

used.

Figure 2 Asymptotic variance of versus t, the true QTL, cM for designs I–III. The assumed model is an additive model,t̂ 0 < t < 20
with and .p = .2 r = .0

the plot of against , by these twoV /V log [l /(1 2 l )]1 2 1 1

models of inheritance (additive and dominant), by allele
frequency (.2 and .4) and by the residual correlation
(.0, .1, .2, .3, and .4). Combinations of all these param-
eters result in 20 pairs of points. Despite the fact that
each point represents a different combination of the
underlying genetic model, allele frequency, and residual
correlation, figure 3 shows an approximate linear re-
lationship between the loss in efficiency and the(V /V )1 2

proportion of ED sib pairs. Indeed, a simple linear-re-
gression model fitted to these data leads to a model of
the form withV /V = 0.671 1 0.115 log [l /(1 2 l )]1 2 1 2

; thus, for example, to achieve a 50% reduction2R = .68
in variance of (i.e., ), approximately fivet̂ V /V = 0.51 2

times as many EC sib pairs as ED sib pairs [l /(1 21

] should be included in the study population.l ) ≈ 0.221

This means that the cost of genotyping (and phenotyp-
ing) would be increased by fivefold if both ED and EC
sib pairs were recruited. On the other hand, to achieve
a 30% variance reduction , only 0.78 times(V /V = 0.7)1 2

as many EC sib pairs are needed [ ],l/(1 2 l) ≈ 1.28
which results in a more modest, 0.8-fold increase in the
original cost of genotyping.

Discussion

The allele-sharing method that uses sib pairs remains
one of the most commonly used tools for linkage anal-

ysis. It provides a simple means for detection of linkage
of a single marker (through hypothesis testing), without
the need to specify the mode of inheritance. A drawback
of this single-marker approach, which is not shared by
the likelihood-based linkage approach, is its inability to
estimate directly the genetic distance between the unob-
served trait locus and the marker (as measured by v), in
the absence of the knowledge of the specific genetic
mechanism. In recent years, however, the availability and
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Figure 3 V1/V2 ratio versus . Here, l1 is the proportion of ED sib pairs among ED and EC sib pairslog [l /(1 2 l )]1 1

simultaneous use of multiple markers for linkage anal-
ysis has become commonplace. Concurrently, one sees
a growing interest in the use of quantitative traits in
linkage studies. A natural question arises as to whether
a unified allele-sharing method for multipoint mapping
of both qualitative and quantitative traits can be devel-
oped. The work by Kruglyak and Lander (1995) rep-
resents one of the first attempts to address this question.

In this article we have offered an alternative approach
to the above question. Our approach capitalizes on the
findings by Risch and Zhang (1995), Gu et al. (1996),
and Zhao et al. (1997), noting that ED and EC sib pairs
provide relatively more information for detection of
linkage to an unobserved QTL, compared with unse-
lected sib pairs. This observation allows one to divert
the attention from a bivariate continuous distribution
to the sampling of three discrete groups: ED, EC with
high trait values, and EC with low trait values. These
three groups are analogous to sib pairs with zero, one,
and two affecteds, respectively, used in the analysis of
qualitative traits. Furthermore, in accordance with the
observation by Risch and Zhang (1995) that it is more
natural to consider the IBD statistics as the dependent
variable, we have presented, in expression (1), the ex-
pected IBD, at a marker locus, that is conditional on
the event reflecting the sampling scheme, such as ED
sib pairs for quantitative traits or ASPs for qualitative
traits. In this representation, the relationship between
the expected IBD at a marker locus and its genetic dis-
tance from the unobserved trait locus can still be es-
tablished, without the need to specify the genetic mech-
anism. With this representation, one can carry out a

unified parametric inference that uses, for example, the
GEE method to locate an unobserved trait locus along
with a measure of statistical uncertainty (i.e., confidence
intervals) that uses either qualitative or quantitative
phenotypes. As a side remark, the method presented
here can be extended to either three or more siblings or
to relative pairs other than siblings (see Liang et al., in
press).

In addition, in this article we have addressed the issue
as to how much efficiency is gained by incorporation
of data from EC pairs when one is dealing with quan-
titative traits. Our results suggest that the gain in sta-
tistical efficiency, as measured by the reduction in
Var , depends strongly on the magnitude of the resid-ˆ(t)
ual correlation and, to a lesser extent, on the allele fre-
quency and genetic mechanism (additive vs. dominant).
Given that complex traits involve multiple genes—that
is, that the residual correlation is likely to be large and
cannot be ignored—one should routinely incorporate
EC sib pairs in conjunction with ED sib pairs. Further
work reveals that this reduction in variance can be ex-
plained effectively by a simple regression of the ratio of
variances on as the independent vari-log [l /(1 2 l )]1 1

able. This simple linear relationship between the gain
in statistical efficiency and the number of additional EC
pairs needed allows one to address practical questions
about the balance of cost effectiveness for the pheno-
typing and genotyping of subjects. Although this issue
should be assessed on a case-by-case basis, recent work
by Gu and Rao (1997) provides practical guidance to
obtain an optimum design.

Finally, we will provide brief guidance for practition-
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ers who are interested in applying the proposed work
to the linkage data. As mentioned earlier, the proposed
method for estimation of the location of susceptibility
genes should be viewed as a supplement to the existing
methods (e.g., LOD-score and NPL methods in GENE-
HUNTER), which are designed to detect linkage—that
is, to test the null hypothesis of no linkage to the tar-
geted region. Thus, when preliminary evidence of link-
age within the chromosomal region is indicated, the
method proposed here can be used to estimate the map
position of the susceptibility gene, along with its con-
fidence intervals. Such preliminary evidence could be
obtained by performing either the LOD-score or the
NPL method to test the null hypothesis of no linkage
(e.g., ). It is also helpful to explore map data inP ! .01
advance, by plotting of the imputed IBD statistics
( in Liang et al., in press) against t in the region of

—
S(t)

interest. We are in the process of expanding the GENE-
FINDER program (Liang et al., in press) to accom-
modate multiple C’s for quantitative traits with ED and
EC designs. This program relies heavily on the access
of investigators to other programs such as GENE-
HUNTER to (1) compute IBD statistics at each marker
and (2) acquire preliminary evidence of linkage, and it
will be available through the Web site, when properly
documented and tested.
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